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] ABSTRACT

We develop techniques for estimating the coefficients, boundary data,
and initial data associated with transport equations (or more generally,

parabolic distributed models). Our estimation schemes are based on cubic }

spline approximations, for which convergence results are given. We discuss
the performance of these techniques in t;o investigations of biological
interest: (1) transport of labeled sucrose in brain tissue white matter

(2) insect dispersal that cannot be modeled by a random diffusion

. mechanism alone.
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$1 Introduction

In this paper we propose generasl parameter estimation techniques to
be used in modeling of transport phenomena. While the fundamental ideas
we discuss have proved quite successful in other areas of application
(elasticity, seismology, enzyme column reactors, etc.--see, for example,
{21, (31, (4], (6], [9]), o;xr emphasis here is a class of transport equations
arising in biology. We treat models in whicﬁ certain of the coefficients
to be estimated are spatially varying. The methods are valid in more
complex transport problems with coefficients that vary both temporally and
spatially (see [6],[7]}), but the underlying theory is technically somewhat
different and more complicated.

We begin in section 2 by formulating an "identification" or parameter
estimation problem involving a general transport equation. Although for
co~:;ience in exposition we ttl'eat only scalar equations, the ideas and
convergence reaulté easily extend to vector systems. Indeed, in a number
of problems we have successfully employed the techniques for coupled systems
of equations.

In section 3, we then reforamulate the estimation problem, putting it in
abstract form for conciu development of our ideas. This abstract problem
is approximated by a uqmnccl of estimation problems in section 4 vhere we
give convergence results for states and parameters. We also explain our use
of computational packages to solve the estimation problems. In section 5,
we apply the methods to tvo'en'-pluz '

(1) estimation of diffusion and bulk flow parameters for the traaspor:

of substances in tissue (specifically, for transport of sucrose in

cat brain white matter)

P
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(11) estimation of spatially varying coefficients in population
dispersal models (in this case, models of flea beetle movement
within linear arrays of collard patches}.

As we shall explain in our concluding remsrks, the methods we have developed
have yielded satisfactory results and insight into biological systems. We
are confident that other investigations concerning transport models in biology
could also be gserved by the application of our parameter estimation methods.
In our discussions in sections 3 and &, it will be comnvenient to employ
notation from elementary functional analysis. Although this notation will
be quite familiar to our more mathematically trained readers, we susmarize
some of it briefly for others. By L2(0,1) we :hall mean the standard Hilbert
space of "functions" f defined on (0,1) with Iofz < o, ‘e inner product

1
in this space is <f,g> = I fg. Ve denote by !ll the usual Sobolev space

of functions £ in L2(0,1') gith first derivatives Df in L2(0.1)°,‘ the subspace
of functions 1 lll vanishing at x = 0 and x = 1 is denoted by B: More
generally, Hj will be the Sobolev space of functions having derivatives up
to order 3, with the jth derivative Djf in Lz.

The usual space of essentially bounded functions is denoted by L -
vith the norm being given by |g|_ = ess sup|g(x)|. The space wj’_ 1s the
space of functions £ having j derivatives with D’f in L.

We shall uss the sysbol |:| to demote a norm in most situatioms.

However, in some discussions, for clarity we resort to the more cumbersome

wotation of I-Iz, |*], etc. representing norms in L,, L_ etc.




§2_A fundamental estimation problem

We begin by considering the general transport equation (based on mass

balance laws) given by

w B ovw=-20@ ) 0cxs1,

t > 0.

Here the term involving V represents ; general "directed movement" mechanism
such as convection in tissue transport models or attractive/chemotactic
phenomena in population dispersal models. We shall assume that in general
this "velocity" V is gpatially varying, i.e., V = V(x). The first term on
the right in equation (1) is a result of the usual Fick's first law of
diffusion and we shall assume for our presentation that thé coefficient of
diffusion & is constant. The last term in (1) represents general sink/source
mecharisms (death/birth, reaction, etc.) that might be present. Of course,
u represents the concentrs<ion (in tissue transport) or population density
(in species dispersal) that is of primary interest.

We assume that along with (1) certain initial conditions u(0,x) = ¥(x)
and Dirichlet boundary conditions u(t,0) = g,(t), u(t,1) = gl(t)
are given (or perhaps must be estimated--both s:ltuatiéns arise in th_e situations
discussed below). Using a standard transformation of variables
(u= u-(1-x)g,-%8;)» one can transform the resulting Initisl-Boundsry Value
Problem (IBVP) for (1) into an IBVP with homogeneous boundary conditions.
We assume that this has been done and furthermore we make the assumption
throughout that f is linear in u. (This linearity assumption is not at all
egsentigl for the methods discussed below to be valid, but it greatly simplifies

our preseatation—-for a discussion of estimation results concerning problems

with rather genersl nonlinearities in £, see (51, [8].)
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After a change of variables in (1) and some elementary manipulations
one obtains the transformed version of the TBVP that will be central to our
nresentation (we drop the ~ on the transformed variable ;):
du_ _37u du
3t - qlaxz * 9,35 + qz(xJu + g(t,x), 0<xc<1, . i
2 u(t,0) = u(t,1) = 0, t> 0,
u(0,x) = ¥(x), 0<x<1.

Given observations of a general biological process that can be represented
by equation (2), our task is to use observations of u to determine the
positive constant q, and the bounded functions q, and qs. More precisely,
we have observations {y;(x)[0 < x < 1} at times t; >0, 1=1, ... , m,
and a given set Q=R x L _(0,1) x L_(0,1) of admissible parameters

( ql’qz’qs)’ over which we wish to minimize the fit-to-data criterion function

m ¢l 2
(3 J@) = } J IU(ti.x) - yi(x)l dx .
i=1 /0
where u(t;,x) = u(t,,x;q) represents the solution of (2) corresponding
to q = (q,,9,.93).
In many practical situations, one has discrete data yij for u at points
(ti’ 13) and in applying our methods one might instead of (3) employ the

slternate criterion function

- . 2 f .
(6) J(Q) = Z. Iu(tilxj) - yijl .

i,j
Indeed we did this in both the specific applications discussed below. (One

could, of course, use (3) with discrete data y13 by first constructing-—ciy . !

- -




by interpolation--an observed "data function" yi(x) from the discrete
observations yij') The convergence theory for use of our methods with

. criteria of the form J is somewhat more delicate, requiring one to establish
a pointwise in x--as opposed to Lz—-convergence of approximating solutions.
We therefore shall restrict our discussions of the theoretical aspects of
our method to the "continuous data" experimental situation which results in
a problem of minimizing (3) over Q subject to (2).

The ideas behind our methods are most succintly discussed in the context

of an abstract form of (2), which we formulate in the next section.

§3 An abstract estimation problem

[

;

é We first rewrite (2) as an initial value problem in the state space
;

Z= Lz(O, 1). Letting z(t) = u(t,-) and G(t) = g(t,:) denote time varying

functions with values in Z, we can formally write (2) as the system

(5) 2(t) = A(Q)z(t) + G(t) t >0,

2(0) = ¥
where the operator A(q) is definad on Don(A(q))stl\Hz by A(q)¢-q1D2¢+qzb¢+q3¢.
(Here and below the operator D is differentiation, i.e. D = g&.) The equation
under consideration can thus be viewed as an ordinary differential equation
in the state space Z. The analogue to the usual (in thé case A is a matrix
operator) aplution operator eAt i8 in this case the solution semigroup (a

one parameter family of operators on Z) associated with (5) which we shall

' denote by S(t) (or S(t;q) 1if we wish to emphasize the dependence on q). Thus
£ solutions to (5) with G = 0 are given by z(t) = S(t)z(0) = S(t)¥ and a
: corresponding "variation-of-constants" formula can be used to define solutions

of (5) in the case that G is nontrivial. Ve susmmarize results for (5) in the
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following lewma (for arguments see Appendix 1 and for detailed discussions

on semigroups and abstract differential equations see [1], ([151).

Lemma 3.1. Suppose Q,€ Wi-Q3€ L.- Then the operator A(q) in (5) satisfies
the dissipative inequality <A(q)z,z> < w<z,2> vhere w = %’lo‘lzl.."l‘l;;'.-
Furthermore A generates a C,-semigroup {S(t)} satisfying sl < &°
and (mild) solutions to (5) are given (for G integrable) by

i

t
(6) z(t;q) = S(t;q)Y + f S(t-0;q)G(o)do.
0

In view of the system reformulation just presented, we recast our

basic parameter estimation problem as one of minimizing over Q the functiona.
. m 2
Q)] J@ = I |z(t59)-y,]

i=1 2

wvhere Yy is the observation function at time t 188 introduced in discussing
(3) above and z(ti;q) is defined by (6).

This problem clearly consists of minimizing a functional defined via a
state equation in the infinite dimensional space Z = Lz(o. 1). Any type of
computational procedure must be founded on some type of approximation to the
equation (6). We turn next to one class of approximation schemes ﬁich have

proved both theoretically and computationally sound.




§4 Approximations of the estimation problem

We approximate the estimation problem involving (6), (7) by a sequence
of problems defined on subspaces ZN, N=1, 2, ... , of Z, Numerous possi-
bilities abound, but the schemes we discuss here have proved most useful in
not only the biological applications presented below, but also in a number
of other areas as indicated in the introduction. The subspaces zN we choose
are those generated by cubic spline elements. Full details on similar
problems are given in [5] but for the convenience of readers and the sake
of completeness, we briefly summarize the fundamentals. Let Bg, Bg, cony B:
denote the cubic B-spline elements (piecewise cubic 02(0,1) functions
corresponding to the partition &N {xj}, Xj = j/N, j = 0,1,...,N,
of {0, 1] --gsee [16, p. 208-209]) modified to satisfy the boundary conditions
B?(O) = B?(l) = 0. Define Z" = span {Bg,BT,-.-B:}- In the usual notationm,
¥ = 550" = (e e PN [e = 61) = 0} where S38M = (4 € P, 1)]0

is a cubic polynomial on each interval [xi, X,..]1}. Explicit formulae for

141
basis elements for S3(AN) can be given ([16, p. 89], [3]) and these can te

used to give analytical expressions for the modified basis elements B? (e.g.,
see [5, p. 10]), [3, p. 12]).
Given the subspaces ZN, we let PN denote the orthogonal projection of 2

onto ZN; that is, for any z €7 Pt_{z is that unique element in ZN defined by the

relationships <PNZ-Z.B?> =0, j=0,1,...,N. Define approximates AY toa by

N N
A”(q) 2 PA(QP; these are bounded operators in Z. Let {SN(t)} be the

_ semigroup generated by AN, i.e. SN(t;q) = expLAN(q)t} --in this case, this

exponential definition has its usual power series definition since AN is
bounded.

We use these constructs to approximate (6) by




t
(8) 2 (t;q) = sNesq)pMy 4 J sN(t-0;q)P"6(0) do,
0

or, equivalently, we approximate (5) by

Ny = ANy + Moy

(9

Moy = Py,

The associlated fit-to-data criterion is then taken as

m 2
10) GIEIN N EARTIEEA S
i=1 2

and the sequence of approximating parameter estimation problems can be simply

stated: Minimize JN(q) over Q subject to (8) or (9). Before discussing

convergence properties of solutions to these problems, we explain how one can

easily implement these approximate estimation problems. We summarize the
more complete discussions given in [5, p. 10-11; p. 22-24].

We first note that any 2 (t) € ZN(and, in particular, any solution of
{8) or (9]) can be written as zN(t) = ¥ W?(t;q)B? for appropriately
chosen real coefficients w?(t;q)- It i:oalso easilyvseen that (9) is

equivalent to the Galerkin system of equationé

<V, 8> = <At@z'(0) B> + <61 B>
(11) N N N .
<z (0),Bj> = <Y,Bj>, j=0,1,...,N.

N NN
If we substitute Z = Z"ini intc (11), then we obtain the matitx system
i




Pl =~ S

-——

L4l

!
'
!
!

ey = Ve + ’NGen

12)
WMo = RN

where QN, KN are (N + 1) x (N + 1) matrices with elements

. Q}ilj = <B§:B?>
(13 N N
= < >
x’i‘j B AQ) B>,

and R“, wu are N + 1 vectors given by

RN(\r]i = <\l’,3?>

(14) N N N N
w = col (wo,wl, .o ,wN) .

Thus, to solvé the approximate estimation problems, one deals with
vector systems of ordinary differential equations, More precisely, for a
given index N of approximation, one minimizes (10) iteratively, using (12)
to compute 'N(t;q) (and hence ZN(t;q)) for each value of q in the

iterative procedure. The matrices QN are seven-banded and symmetric in this

case wvhile the K“ are seven-banded, in general unsymmetric, and involve the

unknown parameters 93» 9p» 95 The iterative procedure we have used with great
success when minimizing (10) is the Levenberg-Marquardt. algorithm (a

wmodified Gauss-Newton type routine) as packaged in the IMSL routine ZXSSQ.
Either an IMSL package (DGEAR) employing Gear's variable order, variable

step method for stiff systems or an IMSL package (DVERK) for a variable order,
variable step Runge-Kutta, was used to solve (12) at each step in the
Levenberg-Marquardt. (An implementation of the Choluky.algorith- is used

to solve equations of the form QNx = y for x.)

B L
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Let EN = (ﬁ?,ag,ag) denote a solution to the problem of

minimizing (10) for a given fixed N (assuming for the present that such
solutions exist). Our goal, of course, is to obtain a sequence of

estimates (either TIN or some subsequence) that converges as N + = to an
estimate q that will be a solution of the minimization problem involving

(7) (or equivalently (3)). We shall establish such a convergence result
through a series of results below. We first argue that zN(t;qN) + z(t;q*) |
when qN is any sequence converging to q* in an appropriate manner. We then,
under reasonable compactness hypotheses on Q, the set of admissible
parameters, argue that some subsequence of {EN} (where fiN ig8 a solution ;

h approximate estimation problem) converges in this manner to a

of the Nt
limit parameter q in Q that is a desired optimal estimate for the original
problem for (7). We begin this program with the following fundamental

convergence statement.

Theorem 4.1. Suppose qN - (qt;, qt;, qt;) is any sequence in Q N( [ﬂ,b]"",l,"l-,,):

0<a<b<w® satisfying _lqzlu,lbqglﬁ.lq};lﬂ are bounded with qul + q;,

q’: +> q; in Lz, i=2,3. Furthermore, assume q;,q; € ".2.- Then

Iz"(t;q") - z(t;q.*)l2 +0 as N+, where z',z are given by (8) and (6) resp.
A convenlent tool to be used in establishing this theoream is a veuion §

of the Trotter~Kato approximation theorem from linear semigroup theory. We i

R

state and use here a simple version (see [5); in particular take ‘I‘N = I and

Qu = @ in Prop. 2.1 of that reference). For other versions see [15], (8], }

[5) and the references given there.

Theores 4.2. Let if'be a Hilbert space and suppose 'r“(t). T(t) are Co-semi-

groups on df generated by linear Operntotsdn » Sf respectively. If (%)

T e e e e ey

(stadility) there exist constants M and B independent of K such that

e o ——— e e o ca e e e e e ————— e - -
]




||1‘N(t) < met, (11) (conmsistency) there exist a subset Dof &
dense in 4 with P Donty) and (1 -0/)P dense in & for some 1) > 0
and for z € 9 we have _b‘zv-jzl +0 as N=+=,
then | .

lTN(t)z-'l‘(t)zl +0 as N+ o for all z €4

and the convergence is uniform in t on compact subsets of (0, =).

We begin the proof of Theorem 4.1 by supposing that {qN} is given

as stated in that Theorem and then choosing,(" AN(qN)ande(q*) in Theorem 4.2.

S

Here, of course AN, A are as defined in section 3 and above; we thus know
that;,d" and @f generate senigréups TN(t) = SN(t:qN) and T(t) = S(t;q*)
respectively. e first use Theorem 4.2 to establish that .SN(t;qN)z > S(‘t;q.)z
for each z € Z.

To verify the stability condition (i) of Theorem 4.2, we observe that,

since Iq:l,.lqgl,, are bounded, one has in view of Lemma 3.1,

AV z,2> = PaPNz,2> = <aq)) PYz, P>

< m(qN) <PNz,PNz> < w(qN) <z,2>

L .B<z,2>
for B appropriately chosen, independent of N. It thus follows from standard

arguments (e.g. see the discussions in [15, p. 16 -22]) that an exponential
bound as in (1) holds.
Next we turn to condition (i1) and observing that A(q.) is the
infinitesimal generator of a Cy-semigroup, we note that 9 = pon(a? @*y»
is dense in Z (see [15, p.8}). Clearly 9 e Do-“(;.-(nc.\')). and
' for AO > w(q.), we have that the resolvent operator Rlo(A(q’)) = [AO-A(q")]'1

exists. For ¥ € Dom(A(q*)) we find R, (A(a*))¥ € Dom(A’(q*)) =D, Thus
0
for any ¢ € Dom(A(q*)) the equation [AO-A(q')]o = ¢ is solvable for

-

¢ €ED (Just take ¢ = R, ¥). Hence (A -A(q*))F > Dom(A(q*)) so that
.“'. —‘; o .

AN
gt -
X
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(AO-A(q'))S? is dense in Z. To satisfy (ii) it remains to demonstrate
that AN(qN)z +A(q*)z for z in the set Z just defined. We state

this as a lemma and defer detailed arguments to Appendix 2.

Lewna 4.1. For z € P =Dom(A>(g*)), we have
1A% ™ 2-A@*)z], > 0 as N+

Having'verifiéd the hypotheses of the Trotter-Kato theorem in the case
of interest to us here, we thus have SN(t;qN)z + S(t;q*)z for z € Z,
uniformly in t on compacf intervals and this holds for any sequence
qN + q* satisfying the hypotheses of Theorem 4.1. _

To complete the proof of Theorem 4.1, we use (6) and (8) to write

(sgain |-| demotes |-|,)

lln(t:q")-z(t;q")l b IP“v-vl +

r (sNct-0)PN6(0) - S(t-0)G(0)1do
0
where SN(t) = SN(t;qN), S(t) = S(t;q*). Thus we have
t
|Fq-205ia0| < 1P%v] + [ [0 PY0o) - G()]ldo
0 .
t N
*J | 8" (t-0)-S(t-0)]G(0) |do
0
t
< |PVy-y| + MeBtI |PN6 () -6(0) | do
0

t N .
+ I | [S"(t-0) -S(t-0) }G(0) |do.
0

Each of these teras + 0 as N+ = from the convergence properties of
P" and SN(t) already established plus the dominated convergence theorem.

This completes the arguments establishing Theorem 4.1.

R N e T SRACVPIS ST

e P SRR WIS, TIOR TSN
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We turn finally to explain how the convergence results of Theorem 4.1
can be used to obtain desired results for our parameter estimation problems.
We first place restrictions on the admissible parameter set Q. Let
O<cac<bcecm, let 82 be a bounded subset of w: (1.e. there exists K
such that q, € B, implies |q2|~ < K and |Dq2|. <K) and B; bea

bounded subset of L“. We assume

. 2
H(a) Qe {a=(q,,9;,9;) € R! Wf x W_|a<q,<b, q, € B,,q, € B},

1

H(b) Q 1is compact in the R x L2 x l.2 topology.

Consider now the functional JN defined in (10) where z"(t;q) =
N .
) w“(t;q)n“ is defined via (12),(13),(14). Noting that x’;j .

1-0

1,qlb B + quBN + qs j depends continuously on q in the Rl. x l.2 x 1.2
topology, one sees that it is not difficult to argue that q + zN(t;q), and
hence q » JN (qQ), are continuous in the same sense. Thus from the compact-
ness assumption (b) on Q we see there exists EN € Q@ that is a soluticn to
the problem of minimizing JN over Q, N =1,2,...

The sequence (i'") thus obtained is in the compact set Q and hence we
N,

can extract a subsequence {q k} converging to some limit parameter q in Q.

We claim that q is a solution to the problem of minimizing (7) subject to

(6). To see this, we first observe that by definition

MM M

Q15) J *q ) <J "(q) for all q €Q.

My .ok

Since ?1'2.'63 € l.z_, we have byTheorem 4.1 that 2 (ti.q ) + z(ti,q) as
N* + », Furthermore, that same thecorem with qN z 'q for all N yields

z"k(ti:q) »> Z(ti;q) for any q € Q. Recalling (10) and taking the limits in

the inequality (15), we obtain J(q) < J(q) for any q € Q; i.e., q isa
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minimizer for J. We summarize our findings in a formal statement.

Theorem 4.3. Assume that Q satisfies the hypotheses H(a),H(b). Then .

solutions EN to the problem of minimizing N exist and there exists 8
N .
subsequence {q X} converging in the R! )

q of the problem of minimizing J given in (7).

x L, x L2 topology to a solution

We conclude this section with several remarks on the above discussions.

First note that we only obtain (thedretically) convergence of some subsequence

of the approximate estimates. In actual practice we almost always have found
that the sequence {EN} itself converges. One can prove that this stronger
) statement is true in the case that the original estimation problem (fer (7))
has a unique solution - a situation umhappily rarely encountered with real
data and a sophisticated model involving a partial dj.fferential equation,

The theory developed above extends easily to the case where one wishes
to also estimate the boundary conditions (e.g., the brain transport example . *
below) and/or initial conditions (e.g., the insect dispersal example below). :
For ease in exposition we have not treated these cases directly in our theory
. ‘ sketched here; the theoretical ideas are the same .in these cases (albeit
‘ : the technical arguments are slightly more involved) as the interested reader
can ascertain by consulting [5],[8]. ‘
‘ Finally, as with most "theorems" in spplied mathematics, the conclusion
| of Theorem 4.3 is valid in many situations where the smoothness hypotheses
(e.8., H(a)) of the theorem are not satisfied. We have mumerous computational
examples on uﬁich the metheds perform well (i.e., converge) even though the

coefficients are not smooth. Indeed, in the insect dispersal example below, .
we have L 4 '3. so strictly speaking, Theorem 4.3 is not applicable. But




15

as we shall see, the estimation schemes p;rfbrl admirably. In this par-

ticular instance, one can, at the expense of a great increase ih technical

tedium, modify the arguments in this paper to actually establish convergence.
However, in a number of other areas of‘applications. we have used our methods

successfully even when we cannot establish convergence theorems for the

particular class of equations under investigation.
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§5. Applications to biological systems: brain transport and insect dispersal

problems

In this section we apply the spline techniques to questions of biological
interest. In particular, by using these techniques in conjunction with experi-
mental data we identify convection and diffusion terms for a brain transport
system and for a population of disperaing insects. Proceeding heuristically,
we examine the identified parameters in order to gainr insight about underlying
biological mechanisms or to suggest further experimentation.

A. Testing the methods with "known" numerical data

Before applying our methods to real experimental systems, we tested their
performance against '"data" generated by a known diffusion and convection
equation. Our intent was to investigate practical issues such as amount of
data required, accuracy of method and computational hazards. In these tests
we also considered a similar (in spirit) approximation method, which uses
modal (eigenfunction) basis elements (see [2]). This allowed us to compare
two algorithms that shate a common purpose, but that may differ in their
effectiveness. Since detailed discussions of our findings can be found in
(20], we summarize those results only briefly below.

We consider the example

u, = quo tqu t>0, 0<xx<1
(16)

u(t,0) = <o

u(0,x) = ¢(x)

vhere ¢(x) = -2:2 + x4+ 1., We ran tests on this example with either
Dirichlpt (u(t,1) = 0) or Neumann (-;-“i(t.l) = 0) boundary conditions at

the right boundsry x = 1.

"Deta” for our tests were generated in the following msnner:
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Fixed values for q;. q; and c: vere chosen (e.g. q; - .3, q; = 1,75,

c: = 1.0) and an infinite series technique (independent of any of the methods

being tested) was used to generate numerical solution values ;(t 1,xj)' at

pofmts (t;.x), 1=1,2, ... s I, 321, 2 o0, I dn ,=) * (0,1).

Either these values alone or in some cases these values with noise added

(via a packaged random noise generator) Qere used as data 713 in the criterion

function J of (4) and its associated spproximation ?‘ with u replaced by V.
In general, the spline based techniques discussed in this paper proved

superior to the modal techniques. For problems with homogeneous Dirichlet

boundary condition at x = 1, we first agsumed that y is known and attempted

to estimate 9, and q, in (16), given varying amounts of data. For I = 1,

J = 3 (ne time observation with three spatial points) the spline method

produced correct converged estimates (for example, at N = 8, estimates a: -

.3001 and ag = 1.7486 and residusl sum of squares (RSS) J%(G%) = .69 x 10°

9
were obtained) while the modal techniques failed to produce a numerically
convergence sequence of estimates. For I = 2 or 3 and J = 3 (two or three
time observations, each involving three spatial points) both methods yield
converged valuss; however, i{n these cases the spline based method appears

to be more accurate (smaller RSS) and more efficient (computationally).
Purthermore, the addition of an extra time observation (I = 3 vs. I = 2) did
pot improve the fit of the model. We then inveatigated the effects of increas-
ing the number J of spatial points in the data sets. A genersl finding was
that t&rc existed & minimm nusber of spatial poiuts necessary for the msthods
to yield good parameter estimates (J = 3 sufficed for the spline scheme while

J = &4 was required for the modal method). Beyond this minimal number, extrs

spatial observation points did not nccuuruy' increase the efficiency of
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the methods. This means that for a given experimental system and its
associated model, it may be possible to identify the number of data
points required for accurate parameter identification., When the piocess
of gathering data is expensive or time consuming, we therefore suggest that
our parameter identification methods may provide guidance in deciding
upon the number of time periods or spatial points that need to be sampled.

Finally, we turned to the full problem of estimating all three
parameters (qi., qé, co) in (16). Our findings were quite similar to those
just summarized. TFor the spline based scheme, one time observation with
three spatial points (I = 1, J = 3) were sufficient data to produce conver-
gence to correct parameter values. Whereas taking an extras time observation
(I = 2) does not generally produce better estimates usiné the spline method,
in some cases it does if one is using the modal technique.

We also examined the performance of the spline scheme with Neumann
boundary conditions and equation (16). Again, the method performed well
in estimating all three parameters q'l, 995 €40 given dsta sets corresponding
toI=1, J= 3, Slightly better parameter estimates were obtained with
I = 2 as opposed to I = 1, no matter the value of J (J = 3, 4, 5, 6). For
fixed I = 1 or 2, estimates based on 3 or &4 spatial points were as good as
those obtained from 5 or 6 spatial points.

In summary, the tests of the cubic spline scheme we carried out on the

model (16) persuade us that the method proposed can be usad with a good deal

of numerical confidence with regard to €itting data to wmodels of the form (2

).
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B. Understanding brain fluid transport

A primary question concerning transport mechanism in brain tiseue
1s whether diffusion alone or diffusion and convection are responsible for
transport in gray and white matter ([12][17]{18])). Mathematically, we can
view this as a question of determining the magnitude and thus contribution
of V (convection) and D (passive diffusion) in the equation
2

du Ju - Da u
t * Vax axz

where u represents the concentration of a substance being transported in

the brain. To investigate this problem we have used our spline techniques

with experimental data kindly provided by Kyner, Rosenberg and associates
({17)118)). - The data consist of laboratory measurements of u values at
various locations in the tissue at a fixed time. These measurements were
obtained from experiments (described in [17][18]) using adult cats.
Artificial cerebrospinal fluid containing labeled sucrose was perfused into
each cat's lateral ventricle. At the end of the perfusion period, the
animals were sacrificed and their brains were rapidly removed and frozen.
Samples of gray and white matter along a direction pu.'pend:lcullt to the

ventricular surface (which will be the x-axis in our model) were removed,

serially sectioned and analyzed. From measurements of radiocactivity, the

average concentration of sucrose in each siice was determined, yielding data

which corresponds to observation at a fixed time t, (tl- 1, 2,0or 4 hrs. for

the cat experimsnts). TFrom this data {&(:1. xj)} for the concentration

u, the transport of sucrose in gray matter can be compared with that in

wvhite matter.
To analyze these datas we used the cubic spline procedures to estimate

paramsters representing diffusion (q, in (16)), convection (q,) snd the

S et W i H A TR R DA,
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concentration (co) at the boundary x = 0. In Table 1 we have extracted
typical results of these analyses from a more detailed report by Sives and
Sato [20]. To interpret these results we have examined the predicted
concentrations as though they were obtained from a least-squares regression
approach and then analyzed the data with F-statistics (see [22]). Of
course our model is not a simple curvilinear regression equation since it
is a dynamic model, but the parameters were estimated using g least-squares
minimization routine. This approach then focuses on: the total variation
in data (total sums of squares or TSSQ), the variation explained by the
model (éxplained sums of squares or ESSQ), and the sum of squares error
between the model's prediction and the data (the residuals or unexplained
variation, denoted RSS). This application of F-statistics is not strictly
appropriate because we do not know anything about the distribution of
residual errors; nonetheless, it provides a quantitative measure of the
performance of different parameter estimates and is couched in terms that
facilitate comparisons between models (e.g., explained and unexplained
variation). The degrees of freedom were selected in the following manner
(following the conventions and notation set out in [22]): explained df =
the number of parameters estimated by our spline technique (analogous to
the number of terms used in polynomial regressions), total df = number of
data points, and unexplained df = (total df) - (explained df}.

From Table 1 two conclusions are striking:
1) both models (diffusion alone, or diffusion plus comvection) explain an

enormous portion of the variation in the data (a mininum of 97%%),
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2) the differences between the success of the two models are negligible

(at most, improving the % of explained variation from 97% to 99%).

In Table 1 and in all of the analyses performed by Sives and Sato [20],

the "diffusion plus convection" model always explained more of the variation
than did the "diffusion alone” model. The addition of a convection term
often resulted in dramatic reductions in unexplained variation (or residual
error); for example, in Table 1 we see that for data set 7, inclusion of
convection reduced the RSS from 22.7 to 7.8. However, because both models
were consistently so successful, it is difficult to establish that one is
significantly better than the other. When we calculated F statistics for
the improvement of explained variation by moving from the 2-parameter
diffusion-alone model to the 3-parameter diffusion-and-convection model,
our F statistics never attained the p < .05 level, and were at the p < .1
level in only one instance.

Clearly, the cubic spline methods yield parameter estimates that perform
exceedingly well in describing the data. This reinforces our faith in the
methods. Unfortunately, we are not able to answer the initial question
about the relative importance of convection in brain transport. The
consistently better (albeit only slightly) performance of diffusion plus
convection models temptingly hints at the role of convection. Our inability
to resolve the issue of convection cannot be blamed on the parameter
identification methods. 1Instead, we argue from Table 1 and similar analyses
that it is apparent that data must be obtained for more than one time
point after perfusion. When énly one concentration profile is available,
there is too much freedom for juggling combinations of D and ¢, or of D,

V and <, such that the data are "fit." Our analyses point out that the

experiments need to be modified in order to assess the importance of
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convection. The addition of another time period is feasible by changing
the label during the course of the experiment (Kyner and Rosenberg, pers.
comm.). Indeed, as we shall see in the following section, data taken at
two time periods allow us to identify the importance of "convection" terms

in models for populations of dispersing insects.

C. Modeling insect movement in cultivated gardens

Since Skellam's [21] pioneering work in 1951, diffusion models have
been used to model animal dispersal. Unfortunately, most of this modeling
has proceeded independently of data ([13], [14]). 1In fact, some researchers
have suggested that the paradigm of diffusive flux is inappropriate for
animal movement and have advised instead a purely descriptive regression
approach to quantifying dispersal ([24], [25]). One of the problems with
previous diffusion models is that only the simplest process, that is pure
passive diffusion, lends itself to tests with experimental data (see [14]).
Recently one of the authors exhaustively applied passive diffusion models

to the movement of two common flea beetles, Phyllotreta cruciferae and

Phyllotreta striolata [11). Although the models provided a good description

of beetle movement in some cases, several experimental results clearly did
not conform to simple passive diffusion (see [11]). We subsequently applied
spline parameter identification methods to these beetle data with a model
extended to include a spatially-varying convection term.

Using mark-recapture experiments, beetle movement was studied im
experimental linear arrays. These arrays were 1 m x 80 m cultivated atrips
in the middle of dense goldenrod stands, each array containing patches of

one of the beetles favored foodplants, collards. Since the goldenrod

field surrounding each array contained no foodplants for the beetles,
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the beetles tended to move only in one dimengion -- up and down the
linear arrays along the 80 m axis. Details about the marking and
recapture procedure and experimental design are described in [11].

The important point is that marked flea beetles were recaptured anywhere
from 1 hour to 3 days after their release in the experimental arrays;
these recapture distributions represent the data that we seek to

describe with a diffusion-convection model. The model we examined is

M 2 22y
—‘"—(V(x)u)+D-——2--uu 0<x<1l, t>0

17 ot 9x %

with u(0,x) (which represents the initial distribution of marked beetles) known
and u(t,0) = u(t,l) = 0. Here the linear arrays have been rescaled to

fit in the (0,1) interval. bn this rescaled interval the cu;tiyﬁped.strips
extended between .1 and .9 and the actual sampling points (recapture stations)
are evenly spaced between approximately .20 and .80. The center of each
experimental array thus corresponds to x = .5. The negative uu term in

(17) represents beetles that disappear from the system either because they

die or engage in long distance migration (both processes are negligible

over the short time scale of our experiments but would become important

over longer-running time periods). We have considered several different

V(x) functions and combinations of V(x) with spatially varying u(x) terms.

In a separate report we will synthesize these analyses to dissect differences
between beetle species and to quantify the influence of crop spacing on .
the movement process (Kareiva and Banks, in prep.). Our ultimate goal

is to describe the changes in density (u) of beetles through time and .




space. In this paper, our more limited goal is to demonstrate the
application of the spline techniques to insect dispersal data, and to
point out some of the problems of such analyses. To do this we have
selected a small subset of our analyses for illustrative purposes.

Technically the spline approximation scheme was successful in two
ways:

1) 1t often identified combinations of V(x) and D in equation (17)

that predicted beetle distributions in close accordance to
observed distributions (see Table 2, example 5.2)
2) it identified convection terms that significantly reduced RSS
relative to diffusion-alone models (again see Table 2,
example 5.3).
It 1s important to note that the addition of convection significantly
reduced RSS while using only the initial data and one time period after
that initial data. This is in marked contrast to the case involving
brain transport, where the performance of diffusion-alone versus
diffusion-and-convection models could not be distinguished. We were able
to use results of the beetle dispersal experiments to examine the differences
between transport processes with and without convection because the initial
date in these experiments was known and fixed. Consequently, the only un-
identified parameters influencing the fit of the model to data are diffusion
and convection parameters. These positive statements are balanced below
by some cautionary tales concerning the problems we had analyzing insect
digpersal data.
One of the difficulties uncovered by our analysis was that a wide

variety of different convection functions yielded low RSS's. Moreover,

the convection functions that worked best represent functions that
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contradicted our initial biological hypotheses. In particular, V(x)
functions corresponding to no convection near x = ,5 and biased motion

out the ends of arrays (away from the center of the gardens) yielded

the lowest RSS values. This contradicts our initial hypothesis that

there should be convection near the ends of each array back towards

the central position (toward x = .5). At this stage, however, because
there are so many reasonable possibilities for V(x) that we have not
examined, we are reluctant to draw any firm conclusions about the shape

of V(x) for these beetle experiments. Note that the spline methods as we
have used them here do not magically reveal the shape of functions such as
V(x) -- they only estimate the constant parameters in an assumed functional
form. We are also cautious because we feel,in retrospect,that the beetle mark-

recapture experiments are not well suited for identifying convection functions.

This unsuitability results from the release of all beetles in one position,
and the fact that subsequent recaptures tended to overrepresent the

middle regions of arrays and underrepresent the peripheral reaches of

each array. Note that the shortage of recaptures near the periphery

could be explained by either of two opposite convection processes:

1) only a few beetles are caught away from the center because convection
towards the center prevents their outward spread, or (1i) only a few

beetles are caught away from the center because whenever they enter that

region, they are rapidly transported out of the arrays due to an outward
convection. To best identify convection processes, mark-recapture
experiments should begin with a uniform distribution of marked individuals.
Changes in that uniform distribution could then be used to distinguish

among different models. The flea beetle experiments suffer because too .

.
—
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few individuals were observed in regions that we speculated would be

chtncter:lzcd by high convection.
A second major limitation of our analysis concerns its assumption of

constant parameters through time in spite of the biological inevitability of

temporal variation in insect movement behavior. 1Indeed, Table 3 includes

examples of what appear to be temporally varying parameters, that is

parameter estimates which vary widely using recapture data from differemnt

days, but identical experiments and beetle species. Only rarely were we

able to find one set of parameters that predicted several consecutive

recapture distributions. Because insects are ectotherms and are very

sensitive to weather, their movement behavior will vary from day-to-day

as a consequence of variation in weather. We are in the process of

extending our analyses to include temporal variation in D, V and u

in equation (17). This elaboration is necessary if we are to model

insect dispersal in extended field situations.

A final caution involves the potential for obtaining good matches
between model and data (i.e., low RSS's), yet biological nonsense.
Applications of these identification approaches should always entail
efforts to get independent estimates of parameters as much as possible.
Othctviaé, wvhat appears to be numerical success might correspond to

biological absurdity. For example, one of the sets of paramsters

that we sought to identify was D and u in equationm (17), holding V(x) = O.
Doing this we occasionally obtained low RSS's, even for more than one

consecutive time period. But, the decay rates or u's that were thus

identified were impossibly high ~- they corresponded to decay rates

five times higher than anything ever observed for flea beetles in the

experimental arrays.
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6. Concluding remarks

The spline techniques we deacribe in this paper are very effective
at fitting particular transport equations to data. By itself, this
parameter identification approach cannot, however, lead to correct
choices about what type of transport equations are appropriate for
particular biological systems. Data must be collected and experiments
designed in special ways 1f one wants to use the parameter identification
approach to distinguish between different transport models. We
recommend experimenting with the spline methods before collecting
experimental data. In that way an experimental design might be tailored
so that it can extract the maximum information from spline identification
methods. Factors such as init{ial data, time schedule for collecting
data and the spatial sampling regime will all influence the performance
of spline methods. We have found, for example, that one of the worst
types of initial data is a point release of marked insects, and now we
plan to modify o;xr mark-recapture experiments hereafter. Spline
identification methods will undoubtedly challenge biologists in their
interpretation of data. Most importantly they allow us to address
complex tramnsport processes well beyond simple random diffusion and

conventional numerical methods.
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TABLE 2

Applying the spline parameter identification approach to Phyllotreta striolata

dispersal in different experimental arrays. N = number of spline basis

elements; % ekpl. = % TSSQ explained by model, that is, it equals

TSSQ-RSS
TSSQ

x 100; t = time period or periods at which data were collected. In

all cases the initial data are u(0,x) = 211.2 for x = .5 and 0.0 for x # 0.5.

The initial spline for t = 0 was fixed to be the same for all analyses below
~ it was the spline that best approximated above initial data. Note that the

results of any given identification run may depend on initial guesses.

Exssple 5.1 Identify D, V, and ¥ in

2
u_npdu, 3 _ -
3t D;;f + ™ (V(x-.5)u) Hu

9m_interpatch spacing
N = 32
t = 1 and 3 days
We searched first for D, then D plus u, then D,u and V

D = 20.0 w’/day S expl. = 74.6%
ue1.9
V - +59. .

. +59.2 m/day Fs.lo = 9,77

p < .00S

PV
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Table 2 - continued

3m _interpatch spacing

N = 32
t = 1 day only
D = 4.0 m’/day % expl. = 99.9%
u=1.35
V = -178.4 m/day FS,S = 851.0
p < .001
Example 5.2 Identify D and V in
Ju azu 9 3
3 - D;;f * 3 (V(15(x-.5)) ")

| 9m interpatch spacing

N =22 % expl. = 21%
t = 2 hrs, 3 hrs. F2,11 = 1.45
D = 1600 m%/day p<.s
V= -2.4 m/day

Exsmple 5.3
Contrast diffusion alone, to diffusion plus convection in

2
.y .:_.'2'. . .:; (V(6.25(x-.5)5u)
X
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6m__interpatch spacing

Diffusion alone

" D = 2520 m*/day
% expl. = 24%

Fy ,=2.19, p< .25

N =22

t = 1 day

Diffusion and convection

D = 240 m’/day, V = -114 m/day

"% expl. = 95.6%

F2,6 = 65.6, p < .001

Improvement in % expl. by adding convection

F

1,6

=98.4, p < .00l

3m _interpatch spacing

Diffusion alone

D = 2190 lzlday
$ expl. = 31%

F, ,=3.12, p<.25

1,

N = 22
t = 1 day

Diffusion and convection

D = 320 m*/day, V = -43.7 n/day
% expl. = 97.3%

Fy 6" 72:0 p<.001

Improvement in % expl. by adding convection

Fy

6" 98.3,

p < .001
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TABLE 3

Parameter identification using data from the same experiment and beetle species,
but different time period after release. As in Table 2, the initial spline

was fixed to provide the best fit to u(0,x) = 211,2 for x = 0.5 and 0.0
for x # 0.5. All analyses below were run with the number of spline basis
elements equal to 22. The "% expl." below refers to the % of TSSQ explained

by diffusion model, that is, it equals TSSQ-RSS x 100.

TSSQ
Example 5.4 Identify D in
gﬂ:na—z%
at 3x

I. Phyllotreta striolata in linear array with 3m interpatch spacing

(i) data from t = 1 day

2190 m%/day % expl. = 31%

estimated D

F, ,=3.12, p< .25

1,7
(ii) data from ¢t = 3 days

8800 mzlday

estimated D

F 7" 3.63, p< .25 % expl. = 34%

1,

I11. Phyllotreta striolata in linear array with 6m interpatch spacing

(i) data from t = 1 day
estimated D = 2520 m%/day

F, ,=2.19, p<.25 S expl. = 24%

1,7
(ii) data from t = 3 days
estimated D = 8900 -zlday

=294, p<.28 % expl. = 30%

Fy,7
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Table 3 - continued

III. Phyllotreta striolata in linear array with 9m interpatch spacing
(1) data from t = 1 day
estimated D = 2330 nzlday

P 66, p <.5 % expl. = 12%

1,8 ° °
(ii) dats from t = 3 days

estimated D = 9600 m>/day

P = 2,74, p <.25 $ expl. = 35%

1,5

Note that in none of the examples, does diffusion alone provide a statistically
significant description of recapture distribution. Nonetheless, the variation

in D's as a function of time is striking.
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Appendix 1

For the arguments to establish Lemma 3.1, we assume the reader is .
familiar with the theory of linear semigroups and dissipative operators on
a Hilbert space (see [1],[15]). We first define Ao(q) = qID2 and
Al(q) = q2D +9q; so that A = Ao + Al. Here Dom (Ao) = Dom(A) and Dom(Al) =
é. Next we observe that Ao(q) is maximal dissipative in Z and is thus

the infinitesimal generator of a Co-semigroup of contractions [15, p.17,

H

Thm. 4.5b7. The dissipative estimate follows immediately:

2 2
<Ay(Q)z,2> = <q;D°z,2> = —|q1||Dzl2 < 0.

Indeed, Ao is self-adjoint with spectrum in (-«»,0] so 5?(A0-AI) = Z for

A>0 (see [19,p.349]) and hence A  is maximal dissipative.

0
We procede by considering Al(q) and demonstrating that it is a relative-

1y bounded dissipative perturbation of Ao(q). First observe that for

¢ € H;. an integration by parts yields
[1 1 1
(q,Db)¢ = -f #D(q,¢) = -I ¢ [Dq,+q,D¢]
0 2 0 2 0 2 2
or
2
Thus <A()¢¢>-I(D ¢)=r[-lbq+]2
1lA)¢, QD qg D ;129 Qzl0
]
< Gloa,l, + laglolel,

and hence AI(q) - wl is dissipative where w is as defined in the statement

of Lemma 3.1. .

Turning next to arguing relative boundedness, we suppose ¢ € Dom(A)) = i n H;.

»
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Then
(A1) lael, = laDevagel, < aDsl, + fagl lel,

while (again we integrate by parts)

1
folw.lz - qlf a,(090¢) = a‘—! -a; (0%4)¢
1’0

J—[I-(A 6)6 < —1—[|A o 19|
Al 07 T )0

If we consider this last term as éLJ(a]AO¢l)(%1¢I) and use the fact that
1

ab 5-%(52+b2), we thus obtain
IIDMZ < —I ) o2 + L511%
1 270 2u2
_‘3._|A o2+ —1 {42
2 .
2q1 0 2q1a2 2

Hence we have

Ipe}, < G{M"“z f-}q”’Z‘

Choosing a =‘%(J2q1)/|q2|w, we find
2
1 |a, |
'q2D¢.l2 h ,qle'D¢,2 f.'z—IAo¢|2 * '_q_1:|¢lz‘

Combining this last estimate with (Al), we finally obtain

1 : 2
IAIMZ hl 'flA0¢l2 + {lqzlm/ql + ,qslu}lﬂzi

so that

[A @-ul)e], < FIAR], + turla,l2/a; + lagl el
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It follows that Al(q) - wl is dissipative and relatively bounded with
respect to AO and satisfies the hypothesis of [15,p.84, Thm. 3.1]. Thus :
A(Q) - wl = Ao(q) + Al(q) - wI is the generator of a C,-semigroup of con-
tractions and hence A(q) = (Ao(q) + Al(q) - wI) + wl is the generator of
a Cy-semigroup {S(t)} satisfying ||S(t)]| < et (see [15, p.80, Thm.1.1]).
This yields (see [15, p.16,17, Thm. 4.5(a)]) the first two claims of Lemma 3.1.
That mild solutions of (5) are given by (6) actually follows by definition

from the usual theory of linear semigroups and abstract evolution equations

(e.g., see [1],[15]).
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Appendix 2

We establish the veracity of Lemma 4.1. First, simple arguments reveal

4

* * 2 - 2 1 R
that whenever qz,q3 € W_, we have 2 = pom(A (q*)) €RH N HO. For if

¢ € Dom(Az(q‘)), then A(q*)¢ € Dom(A(q*)) = H2 n Hé; that is, q;D2¢ +
q;D¢ + q;¢ =y is in H2 n Hé. It follows immediately that

2 * x % L. 2 4 1 .
D¢ = 1/q1[7—q20¢-q3¢] is in H® or that ¢ € H (we have ¢ ¢ HO since

pom(A2(q*)) < Dom(A(q*)) = H% N H(l)).

To complete the arguments for Lemma 4.1, we need some estimates on the
projection operators pN VAR ZN as defined above. These estimates, which
are themselves derivable from well-known results from the theory of spline
approximations, are given in [5, Lemma 2.3] and are as follows:

There exist constants c; such that for z € H4 n Hl,
[PN2-z]. < c N"4D%2
2—70 l ,2
N -31.4
|oep z-z)l2 <N ) z|,

lDz(PNz-z) |2 < czN-2|D4z|2.

Finally, for z € @ < H4 n H(l) we consider the estimates (to facilitate

notation we use |*| for Il2 here)
|y z-a@) 2] = [PNa)PNz-aca*)z]
< [PNa@YHPVe-atamz ] + [ N-na@") 2l

< 1AM@YV z-atamz] o | PN-DAG@D 2]

The second term in this last expression + 0 as N + o, This follows since

L e e
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f PN + 1 on Z (the above estimate yields that PNz-+z for a dense set of
z in Z and the (P} are uniformly bounded on 2). :
]

Consider the first term:

* *
|8t P z-a@®)z] = | (@\DP+qDeq PNz - (a}D+q, Deq ) 2|
1 2 3 1 2 3

N2 N N *
< lqp* (P z-2)| + i(ql-ql)ozzl
Ny, N N *
+ |q20(P z-2)| + l(qz-qz)Dz(
N N *
¢ a5 ®N2-0)] + | (aj-ag)e]
N * 102
hd lqlllDz(PNz-z)lz + Iq’ll-qllln z12
N N N_*
+ la,la o 2-2) |, + Ja,-a,1, 02|,
N) N N *
l + laglalP z-zl, + lag-agl, 2],

But every term in this last sum > 0 as N - « due to the following facts:

»*

* N . <
qul:lqunlqglw are bounded, qq +q,, q; *q; in L, i= 2,3, and

PNz,DPNz,DzPSz converge to 2z, Dz, Dzz, respectively,
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